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SUMMARY

The aerodynamic performance of a long-duct, turbofan nacelle installed with two
different pylon shapes has been evaluated in the Langley 16-Foot Transonic Tunnel
using a twin-engine transport model with a supercritical wing swept 30°. The primary
objective of this investigation was to determine the installation interference char-
acteristics of advanced turbofan nacelles mounted under the wing in the near-sonic
flow field of the supercritical airfoil. Wing, pylon, and nacelle pressures and
overall model force data were obtained at Mach numbers from 0.70 to 0.83 and nominal
angles of attack from -2° to 4° at an average unit Reynolds number of 11.9 x 10° per
meter. Both engine installations used the same axisymmetric flow-through nacelles,
pylon mounted under the wing at 37 percent semispan, with exits at approximately
38 percent of the local chord. Two symmetrical pylon designs were investigated which
had relatively flat-topped crowns at different heights above the nacelles, creating
both lower surface and conventional leading-edge junctures of the pylon with the
wing,.

The results show that adding the long-duct nacelles to the supercritical wing
changed the magnitude and direction of flow velocities over the entire span, signifi-
cantly reduced cruise lift, and caused large interference drag on the nacelle after-
body. Both wing-pylon juncture designs created local flow separation in the juncture
region. The lower surface juncture separated most strongly with a noticeable
increase in wing drag, while the leading-edge juncture exhibited mild shock-induced
separation with only a modest increase in wing drag.

These results indicate that more clearance than is usually necessary between
wing and nacelles will be required to minimize interference for installations involv-
ing shorter, separate, flow-through nacelles, Aalso, strongly indicated is the need
to minimize curvature at the sides of the pylon leading edges and along the wing
lower surface at the pylon junctures in order to reduce local velocities and avoid
separation.

INTRODUCTION

The National Aeronautics and Space Administration has in progress major research
efforts aimed at improving the fuel efficiency of subsonic jet transports. One of
the main thrusts in aerodynamics seeks to improve wing performance by applying super-
critical airfoil technology and by increasing aspect ratio (refs. 1, 2, and 3). 1In
the propulsion field, improvements are being sought in the performance of large tur-
bofan engines, partly by increasing bypass ratio and partly by internally mixing the
core and fan exhausts to augment thrust (ref. 4). The impact of advancing technology
on the shape and relative size of these major components results in wings that have
thicker airfoil sections and shorter chords than past designs, and in nacelles that
may further increase in size relative to the wing.

While these changes are a necessary part of major component improvement, they
are also cause for concern that, when the components are integrated into an aircraft
design, wing-nacelle aerodynamic interference may increase. For example, higher
velocities are generated by the supercritical airfoils than by older sections, which
may intensify local interference in regions where the propulsion system joins the



wing. Also, continued enlargement of the engine nacelles relative to the wing tends
to disturb the flow over a greater area of the wing. As chord length decreases
relative to nacelle size, the wing becomes increasingly sensitive to flow changes
imposed by the nacelles in the vertical direction, thereby strongly affecting 1lift
and drag.

1f overall aircraft performance and efficiency are to benefit fully from ad-
vancing wing and engine technology, a better understanding of the nature and cause of
interference must be provided by airframe-propulsion-integration research in order to
properly design the wing-nacelle combination to reduce this interference. These
objectives are being pursued through a comprehensive research program underway in the
Propulsion Rerodynamics Branch at the Langley 16-Foot Transonic Tunnel to assess
relative installation effects from a variety of schemes for mounting large turbofan
nacelles on thick, supercritical wings. 1Initial exploratory investigations have been
carried out for both underwing and overwing nacelle installations at Mach numbers
from 0.70 to 0.83 using a full-span, twin-jet, research transport model specifically
developed for this work. Highlights of the current research have already been pre-
sented in reference 5. The purpose of the present investigation was twofold: First,
to evaluate the interference caused by pylon-mounted long-duct nacelles under a
thick, supercritical wing, with particular emphasis on the results at a cruise Mach
number of 0.80; and second, to determine the relative interference effects for two
different pylon leading-edge profiles, one intersecting the wing lower surface and
the other intersecting the wing leading edge.

SYMBOLS
c local chord, cm
c mean aerodynamic chord, cm
Cav average chord (trapezoidal planform), cm
Ch wing section normal-force coefficient,
1,0
C - (C d(x
j(; [( p)Lower ( p)Upper] (x/c)
CD drag coefficient, Drag
q,S
CD,I total internal drag coefficient for two nacelles
oL lift coefficient, =iit
q,S
Cn pitching-moment coefficient, Pltchlng-moment
q.Sc
c P =~ P,
P pressure coefficient, -a;r—-
(ACD)NAC increment of installation drag coefficient produced by a single pylon and
1
nacelle, '5[(CD)Nacelles on (CD)Clean wing]
M free-stream Mach number
p local static pressure, Pa




P, free-stream static pressure, Pa

1 free-stream dynamic pressure, Pa

S wing reference area (trapezoidal planform), 3416.66 cm?

t maximum local wing-section thickness, cm

X streamwise distance from leading edge parallel to wing reference plane,
positive rearward, cm

z vertical distance normal to wing reference plane, positive upward, cm

a angle of attack, deg

6h horizontal-tail incidence angle, positive leading edge up, deg

€ angle between wing reference plane and a straight line through local sec=-
tion leading-edge and average trailing-edge ordinates, positive leading
edge up, deg

n fraction of semispan

¢ meridian angle about axis of symmetry of left nacelle (advances clockwise
from zero at top of nacelle when looking upstream), deg

Abbreviations:

BL butt line, cm

FS fuselage station, cm

LER leading-edge radius

MHB maximum half-breadth, cm

NS nacelle station, cm

NWL nacelle water line, cm

R radius, cm

WL water line, cm

WRP wing reference plane

Model configurations:

UWS-A

UWS-B

underwing symmetrical nacelle with pylon A

underwing symmetrical nacelle with pylon B



APPARATUS AND PROCEDURE
Wind Tunnel and Model Support

The present investigation was conducted in the Langley 16-Foot Transonic Tunnel.
This facility is a single-return, continuous-flow, atmospheric wind tunnel with a
slotted test section of octagonal cross section. The slots, located at the corners
of the octagon, vent the test section to a surrounding plenum to provide transonic
capability. Test-section airspeed is continuously variable between Mach numbers of
0.20 and 1.30, The model was sting mounted and held near the test-section centerline
at all angles of attack by the support-system arrangement. Further information on
the wind tunnel and model support equipment can be found in reference 6.

Model

The sketch in fiqure 1 gives the overall dimensions of the basic research trans-
port model in the clean-wing configuration without nacelles. The photographs of fig-
ure 2 show the model complete with underwing flow-through nacelles installed in the
tunnel test section. This model, resembling a wide-body logistics transport, repre-
sents an aircraft weighing approximately 946 000 N designed to cruise at an altitude
of 10 668 m at M, = 0.80 and (i = 0.45., The propulsion system consists of twin,
mixed-flow turbofans with a sea-level static thrust of 226 860 N each housed in
274.3-cn-diameter nacelles,

The model was designed for powered testing, both with inlets faired over and
with inlets flowing. 1In the latter case, the nacelles must accommodate the turbine-
powered simulators (ref. 6, pp. 140-143). This simulator design sized the maximum
nacelle diameter and resulted in a model scale of 1/24,

The choice of the high-wing configuration offered the opportunity to study
interference effects on a wide variety of nacelle installations, including upper-
surface-mounted nacelles, without unduly restricting conventional underwing-mounting
capability. The tails were configured as shown in order to maintain adequate clear-
ance between the horizontal stabilizer and nacelle exhaust paths for any anticipated
nacelle position on the wing.

Fuselage.- Features of the basic fuselage geometry and the descriptive coordi-
nates are shown in figure 3. The shape is comprised of an ellipsoidal nose section,
cylindrical midsection, and an upswept afterbody of locally circular cross section
closed at the rear by a spherical cap.

The values of 2z shown in the coordinate table for the afterbody (fig. 3(a))
locate the line of centers (mean line) of the circular cross sections relative to the
axis of symmetry of the forward fuselage (WL 0.0). Between stations FS 34.290 and
FS 154.623, where the spherical cap begins, the fuselage crown is a straight line
coincident with WL 11.430. The full afterbody keel profile is shown in figure 3(a),
whereas the actual profile is relieved somewhat by removal of material for the sting
cavity. (See photograph in fig. 2 and sketch in fig. 3(b).)

Wing.- Figure 4 shows the planform geometry of the model wing that had a span of
160.327 cm, an aspect ratio of 7.52, and a quarter-chord sweep of 30°. Dihedral and
incidence angles were both 0°, and the wing reference plane (WRP) intersected the
vertical plane of symmetry of the model at WL 8.255. (See fig. 1.) The wing shape
was defined by the airfoil sections located at the fuselage side (n = 0.127), the
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planform break (n = 0.410), and the tip (n = 1.000), all of which are shown in fig-
ure 5. Maximum thickness ratios of the fuselage side, planform break, and tip sec-
tions were 0.144, 0,12, and 0.10, respectively. The corresponding streamwise coordi-
nates relative to the wing reference plane are given in table I, At each value of
X/c, the ordinates of all airfoils between adjacent defining sections can be obtained
by spanwise linear interpolation. These defining airfoil shapes are the same as
those used in the high-aspect-ratio wings of reference 1.

The airfoil at the fuselage side is a modified section incorporating some super-
critical features but has reduced curvature over the rear upper surface in order to
maintain isobar sweep and reduce shock strength at the wing-fuselage juncture. The
airfoils at the planform break and tip stations are unmodified NASA supercritical
sections. The leading-edge points of all sections are collinear, and maximum thick-
ness ratio and twist vary with semispan location as shown in figure 6, which indi-
cates a total "washout" of approximately 3.7°, The variation of airfoil shape and
twist gives the trailing edge a somewhat "gulled" appearance typical of most trans-
port wings. (See oblique rear view of fig. 2,)

Wing-fuselage juncture fairings.~ Figure 7 shows the geometry of the fairings
used to provide smooth shape transitions and control boundary-layer growth in the
wing-fuselage juncture. The forward fairing (leading-edge fillet) was kept to a min-
imal size sufficient to provide smooth flow from fuselage to wing without separating
the fuselage boundary layer (fig. 7(b)). Under the rear of the wing, the fuselage
surface above the MHB curves inboard as it approaches the bottom of the wing
(fig. 7(c)). 1In the same region, the undersurface of the wing rises to form the cove
(rear camber), and the combined surface shapes form a deep cavity. The rear fairing
(figs. 7(c) and (d)) serves to fill this cavity and prevent undue thickening of the
boundary layer (corner flow) in the presence of the strong positive pressure gradient
on the wing. Both fairings were made removable in case future size and shape changes
might be required.

Tail surfaces.- Figure 8 shows the dimensional details of the vertical tail and
its symmetrical airfoil coordinates. The full profile shape of the tail-plane inter-
section, "bullet" fairing, is also shown. The nose and closure of the fairing are
ogives with the same profile radius and length. The horizontal tail, shown in fig-
ure 9, was a one-piece, all movable, negatively cambered surface whose airfoil sec-
tion coordinates are also shown in the figure. The negative-loading feature was
needed to more effectively counteract the increased nose-down pitching moment of the
supercritical wing relative to conventional designs. The horizontal stabilizer was
hinged in pitch from the top of the vertical tail. By removing the partially hollow
bullet fairing, the horizontal stabilizer could be manually set and locked at inci-
dence angles from -2° to 2°,

Nacelle-pylon installations.- The geometric details are shown in figqure 10 for
the three-piece, axisymmetric flow-through nacelles used in this investigation. 1In
the design of the inlet section, designated NACA 1-83-75, the data of reference 7
were used to match the flow requirements at M = 0.80 for the turbine-powered simu-
lator unit referred to previously (ref. 6, pp. 140-143), The ratio of highlight
diameter to maximum diameter is 0.83, and the ratio of external length to maximum
diameter is 0.75., The ratio of highlight area to throat area (contraction ratio) is
1.09. The removable center section of the nacelle, referred to as the transition
section, provides for smooth internal bore changes between inlet and afterbody as
well as for future length changes, adaptation for powered testing, etc.




The nacelle afterbody has a shallow, circular-arc profile with a fineness ratio
of approximately 1.87. The closure ratio, or ratio of exit diameter to maximum diam-
eter, is 0.7, which is generally representative of medium bypass turbofan installa-
tions for subsonic cruise speeds. These features were selected on the basis of the
isolated afterbody test results of reference 8, which indicate that such shapes have
very low drag levels and minimal drag divergence at high subsonic speeds when operat-
ing at ratios of total pressure to free-stream static pressure at flow-through condi-
tions. The interior of the afterbody is shaped to provide a shallow, conically
convergent nozzle.

The overall fineness ratio of the nacelle is 3.5, somewhat longer than mixed
flow designs currently being considered (i.e., ref. 4). This additional length re-
sulted from the desirability of obtaining comparative interference data on different
installations of the same size, thereby requiring the present underwing installation
to have the same length as the upper surface installations shown in reference 5. The
latter would generally require longer ducts than would an underwing installation of
the same engine. Also, maintaining as much as possible of the nacelle geometry
common to all confiqurations facilitated maximum reuse of model components when
constructing the various installations,

Details of the pylon components used to mount the axisymmetric nacelles under
the wing are given in figure 11. The leading-edge shapes of figures 11(a) and (b)
were interchanged on the common strut and trailing-edge section of figure 11(c) so
that two pylon configurations were generated. These differed only in profile height
and cross-sectional shape along the leading edge. Both configurations were slab
sided and had a common thickness ratio of 6.4 percent.,

The low-profile and high-profile configurations are designated pylon A
(fig. 11(a)) and pylon B (fig. 11(b)), respectively. Pylon A provides a profile more
representative of full-scale requirements and gives a somewhat traditional "hockey-
stick" side view. In this case, the crown line at the top of the pylon changes sweep
angle and intersects the wing lower surface noticeably below the actual wing leading
edge and approximately 8 percent of the local chord behind it. Pylon B, with its
raised crown, represents the shape required to provide the nacelles with added in-
strumentation and high-pressure air for jet simulation during future powered tests.
The straight-line portion of the crown follows a nacelle water line to the wing
intersection point, which occurs virtually at the leading edge, longitudinally, and
is approximately 2 percent of local chord below the leading edge, vertically. Thus,

pylons A and B afforded an opportunity to study the effect of changing the location
of the wing leading-edge juncture.

The forward part of each pylon had swept, symmetrical, streamwise sections gen-
erated by applying the given airfoil coordinates along specified water lines as shown
in figures 11(a) and (b). From the rear of the circular-arc portion of the crown
line to the wing leading edge, the locally perpendicular cross-sectional shapes of
the crowns were semi-elliptical as typified by station-plane cross sections A-A.
These shapes were chosen in an effort to maximize the pylon internal volume and
facilitate instrumentation routing from nacelle to wing, etc. Over the region where
the circular arcs define the crown lines, the swept leading-edge shape was smoothly
faired into the semi-elliptical crowns, as is generally done at a wing tip. The
locus of tangent points between the curved and flat surfaces of each leading-edge
piece is shown by the "phantom" (broken) lines within each planform (figs. 11(a)
and (b)). On pylon A the tangent line turns upward, parallel to the crown at the
leading-edge break, and coincides with the parting line of the leading edge and strut
until intersecting with the wing. For both leading-edge profiles, the area below the

6




tangent line is flat and has the same constant thickness as the mating strut
(fig. 11(c)).

The common closure shape used on all pylons had a trapezoidal, constant-chord
planform swept at approximately 33°, The streamwise airfoil section between the
parting line and trailing edge was also constant over the vertical distance from
nacelle to wing. The typical section outline shape and its coordinates are shown in
figure 11(c). The entire closure was attached to the pylon strut, and its upper and
lower ends were contoured to match the wing and nacelle shapes, respectively. On the
lower end, where the closure overhangs the nacelle exit, the underside was made
concave to provide a "runout" for the exhaust flow. This surface had circular-arc
station-plane cross sections with radii about the nacelle axis that matched the in-
side radius of the afterbody at the exit, then decreased linearly to 3.810 cm at the
trailing edge. Note that all pylon dimensions in figure 11 are given with respect to
the local nacelle reference system.

The location of the pylon-nacelle installation on the model wing is shown in
figure 12. The center of the nacelle exit was positioned at FS 76.921, BL 29.660,
and WL -1.,905. The assembly was then pitched down 0,5° and toed in 1.0° about the
exit center point without rolling the installation, thereby maintaining the vertical
symmetry plane of the pylon-nacelle combination perpendicular to the model water-line
planes. These cant angles aligned the installation with the general flow direction
approaching the wing and were established from a pretest wing-fuselage flow-field
analysis at M, = 0.70 using the inviscid, subsonic panel method discussed in
reference 9.

The location of the exit was chosen to position the installation spanwise at
n = 0.37 or slightly inboard of the trailing-edge break (n = 0.41). 1In the longitu-
dinal direction, the exit occurred at 37.6 percent of the local chord and was in-
tended to generally match the core exit location of a separate flow installation with
the fan exit placed near the wing leading edge. The vertical spacing between the
exit center and the wing reference plane was made approximately 40 percent of the lo-
cal chord to represent a full-scale channel height between wing and nacelle of almost
1 m. Although this spacing may be larger than the spacings of past design practice,
more channel area was desired because of the long-duct volume extending under the
wing and because of higher airfoil velocities anticipated relative to older, conven-
tional sections., Throughout the remainder of this report, the two configurations of
figure 12 are identified as UWS-A and UWS-B. These designations indicate that both
installations were of the underwing type (UW), had symmetrical nacelles and pylons
(S), and incorporated either the low (-A) or high (-B) pylon leading-edge profile
discussed previously.

INSTRUMENTATION

The airplane model was completely metric and contained a conventional six-
component strain-gage balance that measured overall aerodynamic forces and moments,

Chordwise pressure distributions were measured on the upper and lower wing sur-
faces at nine spanwise stations and along the top of the fuselage over the virtual
chord length of the wing at n = 0. Figure 13(a) shows the spanwise locations of the
orifice rows, and table II provides the chordwise orifice locations at each span sta-
tion. Each entry in table II denotes the presence of an orifice at the corresponding
values of x/c and n, whereas the entry itself gives the fuselage-station location



of the orifice relative to the model nose. This information aids in spatially relat-
ing wing and pylon-nacelle pressures since the latter are located by fuselage station
throughout this report. At n = 0.328 and 0.440 in table II, the annotated entries
and corresponding values of x/c = 0.5620 and 0.4140 are actual locations of ori-
fices displaced from standard chordwise positions to avoid a parting line between
mechanical components of the wing.

Most of the orifices were located between the side of the fuselage and midspan
where the greatest influence of any test nacelle installation might be expected.
orifice rows from TN = 0.154 to 0.550 contained 45 taps - 1 at the leading edge and
22 on each of both surfaces. On the outer portion of the wing from n = 0.750 to
0.950, reducing the number of orifices in each row was necessary because of decreas-
ing mechanical thickness due to taper. As a means of facilitating the routing of
instrumentation through the available space within the wing, the orifice rows from
n = 0.154 to 0.440 were located on the left inboard panel and those from n = 0.550
to 0.950 were installed on the right outboard section. (See fig. 2.)

Pylon-nacelle surface pressures were measured only on the left side of the
model. Two rows of orifices differing in vertical position were installed along
either side' of the pylon as indicated in figure 11(c). The nacelle was instrumented
over its length with six longitudinal orifice rows lying in the key meridian planes
shown in figure 13(b). Notice that the meridian angle ¢ advances clockwise from 0°
at the top of the nacelle when viewing the left engine installation from the rear.
At ¢ = 0°, the presence of the pylon limited the instrumentation to those few ori-
fices ahead of the pylon leading edge. In the rear-view sketch of figure 13(b), the
position of the wing and pylon orifice rows adjacent to the nacelle are also shown
for convenient reference. Internal static pressures were obtained in the inlet
throat at NS 6.350 by four orifices positioned 90° apart circumferentially.

All pressure measurements on the wing, pylon, and nacelle were made by 12 pres-
sure scanning units mounted in the hollow, removable nose section of the model. Each
scanning unit which contained a transducer was capable of measuring 47 pressures se-
quentially. The units, mounted in groups of six on two individual stepping devices,
were electrically actuated, simultaneously. This instrumentation arrangement kept
the model orifices and transducers sufficiently close together to virtually eliminate
"tube lag;" also, this arrangement required only soft, flexible, electrical lead
wires to be routed across the balance and through the support system, avoiding any
significant mechanical restraint.

Pressures were measured at 16 positions in the fuselage sting cavity by individ-
uwal transducers located outside the tunnel test section. The small metal tubes that
transmitted cavity pressures to the transducers were fastened to the external surface
of the sting (see fig. 2), including that portion inside the fuselage. Within the
cavity, the tube ends were positioned where desired and left open to serve as ori-

fices. Adequate clearance was maintained between tube ends and model surfaces to
avoid balance interference.

TESTS
This investigation was conducted at Mach numbers from 0.70 to 0.83 and nominal

angles of attack from -2° to 4°., The unit Reynolds number averaged over all test
conditions was 11.9 X 106 per meter.




Aerodynamic force and pressure data were obtained for the clean-wing model
(fig. 1), complete except for nacelles, and for the model with UWS-A and UWS-B pylon-
nacelle installations added (fig. 12). The major part of this investigation was com-
prised of tests of these three configurations, during which the tail surfaces were
always installed and the horizontal stabilizer was set at Gh = 0°,

Force data only were taken at fewer Mach numbers for the model without nacelles,
during which the horizontal tail was either set at 6h = 1° or both tail surfaces
were removed entirely. Whenever these force-data results appear in this report, the
status of the tails is appropriately noted. These data were obtained to assess trim-—
ming effectiveness for possible future use. However, during the present investiga-
tion, no deliberate attempt was made to trim the model.

Boundary-layer transition was fixed on the model by 0.25-cm-wide strips of sili-
con carbide grit, sized and positioned by the considerations of references 10 and 1.
Strips of No. 100 grit were applied at 2.54 cm behind the fuselage nose, at 2.54 cm
behind the forward tip of each pylon, and along x/c = 0.10 on both tail surfaces.
Strips of No. 120 grit were placed at 2.54 cm behind the nose of the "bullet" tail
fairing and at 0.95 cm behind the nacelle leading edges on both inside and outside
surfaces.

Transition was fixed on the wing upper and lower surfaces as indicated by the
sketches in figure 14. The transition strips are located farther rearward than usual
in an effort to more nearly simulate the aerodynamic behavior of the wing at full-
scale Reynolds numbers. (See ref. 11.)

DATA REDUCTION

All data from the model and wind tunnel were recorded on magnetic tape and were
used to compute standard aerodynamic force and moment coefficients. The trapezoidal
planform area of the wing and the mean aerodynamic chord ¢ were used as reference
area and length, respectively. Resulting model force and moment coefficients were
referred to the stability axis system with moment reference center located at
FS 75.522 and WL 0.0 (fig. 1). The longitudinal position of this point corresponds
to 25 percent of the mean aerodynamic chord.

The angle of attack of the model was obtained by correcting the recorded pitch
angles of the main support strut for sting deflections under aerodynamic loading.
The necessary deflection characteristics were determined by pretest static force
loadings on the model, balance, and sting support system assembled in the tunnel test
section.

Normal, axial, and pitch force data were corrected for internal sting cavity
forces generated by local differences between cavity and free-stream static pres-
sures. These tares were computed by assigning appropriately weighted areas and mo-
ment arms to each measured cavity pressure. Model force data with nacelles installed
were corrected for the axial force produced by the internal flow (CD,I) in passing
from the free stream through the nacelles to the exits. These internal corrections
were computed by one-dimensional flow analysis at each test Mach number and angle of
attack. The measured tunnel conditions and average static pressure at the inlet
throat were used to determine the internal mass-flow rate and the duct Mach number
and pressure distributions. Pressure forces on the entering stream tube and nacelle
duct were then obtained by momentum analysis and pressure integration, respectively.
Duct skin friction was computed using the nacelle internal wetted area and friction



coefficients for turbulent, compressible, flat-plate boundary-layer flow. (See
ref. 12, p. 1110, eq. 27.66a.) The calculation of friction coefficients was based
on the duct length and the average internal Mach number taken over that length.

The resulting total internal drag was attributed almost entirely to skin fric-
tion, did not vary significantly with Mach number or angle of attack, and averaged
approximately 5 counts per nacelle (1 drag count is equivalent to Cp = 0.0001).
Consequently, the total measured drag of configurations with nacelles was reduced by
approximately 10 counts as indicated in figure 15. Data are shown for both pylon
configurations, although the internal drag increments are nearly identical for the

data shown. The average computed mass-flow ratio for each nacelle was approximately
0.685.

PRESENTATION OF RESULTS

All the aerodynamic force data taken during the investigation are presented and
shown graphically. Although it was possible to present only part of the pressure
data actually obtained, the amount of plotted pressure data presented is sufficient
to provide an adequate graphical sampling of the results. In addition, sufficient
pressure data are presented from which to assess flow conditions on the various
configurations and locate installation effects. These pressure plots have been lim-
ited to the two Mach numbers of primary interest, namely, 0,70 and 0.80, the latter
being the assumed cruise condition. Supplementary pressure-coefficient data for the
wing and pylon-nacelle installations may be obtained by contacting the authors at the
Propulsion Aerodynamics Branch, NASA Langley Research Center, Hampton, Virginia
23665-5225. These results are available for each configuration at Mach numbers of
0.70, 0.75, 0.78, 0.79, 0.80, 0.81, and 0.82 and at nominal angles of attack from -2°
to 4° (CL =~ 0 to 0.8).

Unless otherwise noted, data were obtained with tail surfaces installed and with
the incidence angle of the horizontal stabilizer set at 0°.

The major results of the investigation are presented in the following figures:

\ Figure

Aerodynamic force data:
Configuration With C]-ean wing 9000 0000600000600 06 00600006 06000000800000600600800s0b0s00e00 16
Configurations UWS-A and UWS-B compared with clean-wing configuration es.seeee 17

Chordwise pressure distributions:
Clean-wing configuration
My = 0.70; N = 0 tO 04950 seeeecscsescacssescsesssssccsssssssscscssescsnce 18
Mo = 0.80; N = 0 tO 0.950 ececsessscosossocscssessossossscsacssccscssesscsece 19
Configuration UWS-A
M, = 0.70; N = 0,154 tO 0.550 eeeevseceecscsscocacscssssacssacsssssscsnses 20
M.”=Oo807 N = 0,154 tO 0.550 ceeeveeccencsosacscssssssscsscsscsscssscsscsscnse 21
Confiquration UWS-B
Me = 0.70; N = 0,154 tO 0.550 ceueeecocsssccscsasssescssosssssscacsssssscs 22
Me = 0.80; N = 0,154 tO 04550 4seseosesoscsascsscasssoscccsascssscssocsssece 23
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Figure

Pressure coefficient characteristics:
Clean—Wing Configuration; Mm = 0,70 ®© 0000000000000 00000000000000000es00000 24
Clean-Wing Configuration; Mw = 0'80 © 0 0000000000000 0000000000000 000 00000t S 25

Influence of pylon-nacelle installations on wing surface pressures:
Configuration UWS=A; M, = 0.70 cceececccssccscacsscscesssossscasssssoccssnses 26
Configuration UWS-A; M, = 0¢80 cececsocersonnsasosacssssssossssscscsssacsssecne 27
Configuration UWS-B; M,
Configuration UWS-B; M,

"

0.70 00 0000000000000 0000600002000000000000000000000 28

0.80 ©0 0000000000 0008000 0000000000000 000000000sr000 29

Local effects of nacelle installations on wing lower surface pressures:
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DISCUSSION
Pressure Data

Clean wing.- The airplane model used in this investigation was designed as a
test vehicle for measuring the aerodynamic effects caused by different wing-mounted
nacelle installations. (See ref. 5 also.) An important design objective was that
the wing should provide a flow environment for the nacelles representative of future
transports using advanced subsonic wing designs. The diagrams of figures 24 and 25
show that the general pressure characteristics of the wing are quite typical of
swept, supercritical designs and that the above objective was met quite
satisfactorily.

At M, = 0.80 a very mild secondary expansion appears on the rear upper surface
around the trailing-edge break. (See fig. 25(a), n = 0.328 to 0.440.) This was
caused by the combination of twist and upper surface curvature development as the
airfoil shapes changed from modified root section to the standard section at the
break station. However, this anomaly was considered weak enough not to compromise in
any way the validity of the installation effects being sought. Consequently, no
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attempt was made to reduce the upper surface curvature of the finished wing in that
region.

Wing with nacelles installed.- Figures 26 to 29 compare wing pressures of each
pylon-nacelle configuration with those of the clean wing at constant angle of attack
and Mach numbers of 0.70 and 0.80. The angles of attack selected for these compari-
sons correspond to test points for which pressure-coefficient data were available and
the clean-wing lift coefficient was near C; = 0.45, the assumed requirement for
cruise at M, = 0.80. At n = 0.370, the nacelle mounting station, no pressure data
are shown on the lower surface because the pylons covered the entire chordwise ori-
fice row at that location.

These results indicate extensive adverse interference of the large pylon-nacelle
installations with the wing. Velocity reduction occurred on the upper surface from
n = 0.250 to 0.550, the region spanning the nacelle. Although minor at M, = 0.70,
the velocity suppression became quite noticeable at M, = 0.80, showed no marked de-
pendence on pylon leading-edge profile, and was presumably related to the large size
of the installation as a whole. (Compare figs. 27(a) and 29(a).) Along the outboard
panel, from nacelle to wing tip, the effective angle of attack was reduced, as noted
by the decrease in leading-edge pressure peaks and slightly increased suction on the
lower surface. Outboard of n = 0.440, the lower surface is seen to be generally
free of any major interference,

As expected, the most severe interference is evident on the lower inboard sur-
face between the nacelle and the side of the fuselage. This occurrence resulted
mainly from the flow accelerating longitudinally (overspeeding) around the pylon-
nacelle installation. The largest overspeed peaks on the lower surface are noted at
n = 0.328, just inboard of the pylon, and occur typically where the pylon obstructs
the flow turning spanwise at the wing leading edge.

The local installation effects on lower surface pressures are shown in more
detail in figures 30 and 31. The given fractions of semispan correspond to positions
approximately halfway between pylon and fuselage (n = 0.250), 2 cm inboard of the
pylon (n = 0.328), and 4 cm outboard of the pylons (n = 0.440). In figure 30, the
data are compared at cruise lift coefficient and are shown for Mach numbers of 0.70
and 0.80. At M, = 0,70, the results show strong, normal recovery along the under-
side of the cambered trailing edge (cove) and no significant interference at
n = 0.440, indicating generally good alignment of the pylon with the flow. However,
the peak pressure coefficients at n = 0,328 are noted as rather high, relative to
the critical value for configurations whose desired cruise speed is M, = 0.80. As
the free-stream Mach number was increased from 0.70 to 0.80, shocks and boundary-
layer separation developed in the inboard channel for both pylon-nacelle installa-
tions (fig. 30(b)).

The reversal in relative levels of the inboard channel pressure peaks between
Mach numbers of 0.70 and 0.80 was due to a difference in separation characteristics
of pylons A and B, which can be seen in figure 31. There, installation effects on
local wing lower surface pressures are shown for each of a number of angles of attack
at M, = 0,80. Pylon A, with low profile leading edge and underwing juncture
(x/c ® 0,08 at n = 0.370), exhibits fundamental shape separation characteristics at
angles of attack from 0.25° to 1.74° (figs. 31(a) to (d)). At n = 0.328 in fig-
ure 31(b), the pressure distribution for configuration UWS-A flattens and indicates
separation at x/c = 0.10. This value corresponds to a position approximately half-
way between the pylon and wing leading edges at n = 0,370, the nacelle mounting sta-
tion. The flow separating ahead of the pylon leading edge apparently fills the
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inboard side of the pylon juncture with the wing and obscures the physical curvature
of the inboard shoulder. Consequently, no interference expansion occurs in the wing
pressure distribution. As the angle of attack increases, the separation point moves
rearward, and the severity and extent of the separated flow diminishes (notice
trailing-edge pressure coefficients at n = 0.250). In the inboard juncture, the
flow reattaches and begins to follow the physical surfaces again. The interference
peak begins to rise at a = 1,74° (fig. 31(d)) and reaches a maximum value at

o = 2,23° (fig. 31(e)). Over the angle-of-attack range from 0.25° to 2.23°, pylon B
produces interference peaks up to C_ = -0,8 in the inboard channel and shock-induced
separation. With a further increase in angle of attack, the general decrease in
velocity under the leading edge causes the negative peaks at n = 0.328 to decrease
and the flow to reattach to the rear lower surface of the wing. At a = 4,22°

(fig. 31(£)), the results indicate strong recovery in the cove and flow in the in-
board channel which, though slightly supercritical, is essentially shock free. More-
over, the peak pressure coefficient of approximately -0.5 must be tentatively consid-
ered as the maximum negative value allowable in the inboard channel at the desired
cruise conditions if underwing pylons are to be successfully integrated with the
present wing.

One of the major factors contributing to the flow separation at the pylons is
that the present supercritical airfoil shapes generally produce higher velocities
along the forward lower surface than do the older, conventional airfoil sections. On
the older sections, the leading-edge radius was not only smaller but was followed by
a very flat profile that maintained surface velocities below free-stream value for a
greater percentage of the chord. Thus, the leading-edge disturbances of pylon and
wing could be superposed and still maintain acceptable velocity levels. Since the
introduction in the 1950's of turbojet-powered aircraft with nacelles pylon mounted
under the wings, the importance of this feature to the successful integration of
pylons with transport wings cannot be overemphasized. With the newer, thicker super-
critical sections, surface velocities under the leading edge are much higher; there-
fore, this surface may have to be modified to reduce velocities locally around the
pylon.

Reference 13, for example, shows the inboard channel pressures (n = 0.320) for
a transport model with long-duct nacelles and a wing similar to the present model
except for having conventional airfoils. At M, = 0.82 and CL = 0.45, pressure
coefficients in the forward inboard channel of the model in reference 13 correspond
closely to those of the present model at n = 0.328 in figure 31(d). For the clean
wing of reference 13, the pressure coefficient was zero at x/c = 0.10 to 0.15, and
the peak value with nacelle installed was -0.5. For similar cruise conditions
(M, = 0,80 and C, = 0.45), the corresponding pressure coefficients for the clean,
supercritical wing (n = 0.328) are those in figure 31(b) or figure 31(c). At
x/c = 0,15, the level of -0.30 indicates a 15-percent velocity increase over the con-
ventional wing at the same location. This increase is also reflected in the inter-
ference peak when the nacelles are added (configuration UWS-B) and the flow in the
inboard channel becomes supersonic, with resulting shock formation and/or boundary-
layer separation.

Consequently, the present results show that the higher velocities in the lower
leading—-edge region of the thick, supercritical airfoils can severely aggravate pylon
interference from the underwing pylon-nacelle installations. For the present wing,
this problem might be partly overcome by means of "wing contouring”" whereby the
forward lower surface of airfoil profiles near the pylons would be flattened and
steepened to reduce local velocities.
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The juncture position of pylon A, as well as the leading~edge cross-section
shapes of both pylon configurations, also contributed significantly to the flow-
separation problems encountered. The leading edge of pylon A was set behind that of
the wing in an effort to relieve juncture interference. Ironically, this was
achieved to a limited extent, but only then because of flow separation. Presumably,
any pylon leading-edge shape intersecting the forward lower surface of the present
wing would tend to jeopardize the flow integrity, a feature which the airfoil sec-
tions cannot tolerate. Also, the superposition of any disturbance from the pylon
tends to occur farther rearward on the wing where its velocities and compressibility
effects become larger. Based on these results, therefore, the underwing juncture of
pylon A is considered unsuitable for use with the present supercritical airfoils in
combination with the long-duct nacelles in their present position.

The rather flat-topped shapes chosen for the pylon crowns or leading-edge cross
sections (fig. 11) were based on model and possible full-scale requirements for maxi-
mum internal pylon volume. However, these shapes also produced highly curved shoul-
ders at the sides of the pylons, over which the flow had to pass when accelerating
downward and around the lower leading edqge of the wing near the juncture. Generally,
increasing curvature and velocity together would be expected to worsen compressibil-
ity effects and interference, and this did occur very noticeably in the inboard chan-
nel (n = 0.328) at both M, = 0.70 (fig. 30(a)) and M, = 0.80 (figs. 31(e) and
31(f)), where little or no separation occurred. Notice that the peak pressure coef-
ficient of pylon A is more negative by Ac_ = -0.2 than that of pylon B, a result of
the relatively small change in shape. Thus, the sensitivity of this already high in-
terference region to the side curvature of the pylons suggests that flat-topped crown
shapes may not be desirable when the nacelle afterbody is largely located under the
thick, supercritical wing.

Based on these results, it should be possible to reduce the present pylon inter-~
ference by reducing the shoulder curvature. This could be done most effectively by
using a crown shape whose curvature decreases continuously from the top of the pylon
to the sides. This shape limits the maximum curvature of the pylon cross section to
a single region located along the pylon crown or leading edge. The leading edge of
the pylon should then join that of the wing where the airfoil surface velocities are
minimal, thereby avoiding combinations of high curvature and velocity that result in
separation, as in the case of the present pylons. Consequently, the "standard"
leading-edge juncture should still afford the best opportunity to minimize the peak
level and chordwise extent of the pylon disturbance superposed on the wing. Provided
the pylon crown is well rounded, such junctures should also be less susceptible to
separation in the presence of strong crossflows generated by the thick, swept-wing
leading edge. Reference 14 provides an interesting example of how revising the pylon
crown curvature, as cited above, eliminated a crossflow separation problem on the
outboard side of a pylon joining a swept wing.

Nacelle effects on the lower inboard wing surface at M, = 0.80 can be seen by
comparing data for configuration UWS-A and the clean-wing configuration at n = 0.250
in figures 31(b) and (c). For these conditions, the flow separation on the inboard-
side juncture region between pylon A and the wing maintained pressures in the inboard
channel (n = 0.328) closely matched to those of the clean wing over approximately
40 percent of the local chord. Since no strong interference disturbance was propa-
gated inboard, as in the case of pylon B, the pressure difference on the lower in-
board wing surface at n = 0.250 between configuation UWS-A and the clean wing
appears to be due to flow acceleration around the nacelle afterbody. This more ex-
tensive effect can be seen in figure 27(b), which shows that the nacelles reduced the
pressures over approximately 40 percent of the lower surface on the inboard wing
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panel. Consequently, a significant loss of inboard lift can be anticipated. Also,
note that the nacelle disturbances did not diminish noticeably at low values of semi-
span positions, indicating a modest channeling effect between nacelles and fuselage.

Pylon-nacelle pressures.- The longitudinal distributions of pressure coeffi-
cients measured along the inboard and outboard sides of the two pylon-nacelle instal-
lations are compared, on facing pages, in figures 32 and 33 at M, = 0.70 and 0.80,
respectively. The upper and lower wing surface pressures immediately adjacent to the
installations are repeated in these figures for spatial references, Comparing the
pressure recovery on the wing lower surface just inboard and outboard of the nacelle
readily indicates the condition of the inboard channel flow because the lower-surface
data at n = 0.440 follow closely those of the clean wing. Interference on the
nacelle surface can be assessed by comparing local pressure levels to those along
¢ = 180° at the same fuselage station. The latter provide a near-isolated reference
condition because the orifice row is farthest from the wing. Also, as a convenience
when comparing pressure levels, the data for ¢ = 180° are repeated with the other
data for each side of the installations.

From the data for M, = 0.70 and cruise lift conditions, the flow around the
pylons and nacelles is seen to be subcritical, attached, and recovering normally in
the inboard channel (fig. 32). At M_ = 0.80, the onset of flow separation at the
pylons is quite evident in the inboard data for angles of attack from 1.25° to 2.23°
(figs. 33(a), (b), and (c)). Also, the inboard pylon pressures vary with configura-
tion and attitude changes similar to the wing-lower-surface data discussed previously
(fig. 31).

Nacelle pressures on the afterbody surface under the wing exhibit adverse inter-
ference over the entire upper inboard quadrant (¢ = 30° to 90°), thereby indicating
a very definite increase in installed drag relative to isolated conditions for
Me = 0.70 and 0.80. (See figs. 32 and 33.) Although the pressures in some areas on
the nacelle afterbodies are different, implying significant drag differences, it will
be shown that the differences between inboard channel pressures due to changing pylon
leading-edge shape have relatively minor effects on the afterbody drag of these con-
figurations. A comparison of figures 33(c) and (d) shows that the flow reattaches to
the wing and pylons between a = 2° and o = 4° and that afterbody interference
decreases. Thus, a general reduction in pressure drag with increasing attitude is
indicated.

Force Data

Complete-model lift and drag characteristics.- Effects of the large nacelle
installations on configuration aerodynamics are summarized in figures 34 to 36, which
compare lift and drag for the model with and without nacelles. Large adverse lift
and drag interferences are evident throughout these results, as anticipated from pre-
vious considerations of the pressure data. For cruise angles of attack of 1° or 2°,
figure 34 shows that both nacelle confiqurations reduced lift about 16 percent at
Mo = 0.70 and 24 percent at M, = 0.80, based on the cruise value of C;, = 0.45,
Local flow separation in the inboard channels apparently had little effect on 1lift
since there was no rapid shift in level corresponding to the abrupt slope changes in
the drag polars which denote separation or reattachment.

The extensive region of adverse lift interference caused by the large nacelle
installations is illustrated in figure 35 by the span loads diagrams for the test
configurations at a cruise Mach number of 0.80 and o = 1,25° (approximate design
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1ift condition for clean wing). The large lift reductions inboard of the nacelles
are presumably related to the high-wing position and channeling effect between the
pylon-nacelle installations and the fuselage because the pressure data showed this
region to be dominated by increased velocity over approximately 40 percent of the
local chords. A more surprising result was the extent of reduced loading on the out-
board panel, manifested in the pressure data as a loss of leading-edge suction. This
effect is currently attributed to the downward motion of the flow over the nacelle
afterbody which caused a reduction in the local angle of attack as the wing leading
edge swept rearward over the installation.

The poor installed lift performance seen in figure 34 could presumably be
improved somewhat by moving the nacelles farther outboard to minimize the channeling
effect. Because of the extensive disturbance created by the large nacelles, major
1ift improvements will probably require the addition of a leading-edge extension
inboard of the nacelles and local twist revisions to raise the section angles of
attack in the vicinity of the engine installations. Such features, usually applied
to compensate for the addition of engines, were not incorporated initially in the
present configuration because the near-term research objective is to first try
minimizing nacelle interference by means of installation shape and position before
considering possible wing design changes.

In figure 36, total drag coefficients as a function of Mach number are compared
at cruise 1ift with and without nacelles installed. The sum of the clean-wing-model
drag and the skin friction drag of the nacelle installations is also shown, making
the pressure drag and compressibility effects of the nacelles readily visible.
Actual drag divergence is assumed to occur when aC /8M°° = 0.1, which, by choice of
figure scales, corresponds to the point on each curve where the slope is 45°. It can
be seen that the drag divergence Mach number was 0.81 for the clean-wing model and
decreased to approximately 0.78 when either nacelle installation was added. Thus,
poor installed drag performance is indicated by the development of strong compress-
ibility effects and premature drag divergence, which occurred noticeably below the
desired cruise Mach number of 0.80.

Nacelle installation drag.- All drag values that follow are increments associ-
ated with one pylon, nacelle, and model wing panel. The installed drag increment
(ACD)NAC ijs defined as half of the difference between total model drag values with
and without nacelles when compared at the same Mach number and lift coefficient.
Values of (ACD)NAC from the force balance measurements appear as a function of
M, in figure 37 for Cp = 0.45, the assumed value for cruise at M, = 0.80. Drag
obtained by integrating measured pressures on one pylon trailing edge and nacelle
boattail (closure drag) is given in figure 38 as a function of angle of attack at
M, = 0.70 and 0.80. In the pylon data, the rapid drag reduction (fig. 38(a)) or
slope change (fig. 38(b)) indicates where the initially separated inboard channel
flow reattached as angle of attack increased.

At M, = 0.70 to 0.80, the "isolated" parasite drag of the pylon and nacelle is
estimated to be approximately 21 counts, of which 15 counts are skin friction (see
fig. 37) and 6 counts are pressure drag. The latter consists of 3 counts each of
nacelle spillage and afterbody drag (pylon pressure drag assumed negligible). Inlet
spillage drag was obtained for the actual test shape by the computational method of
reference 15 and was verified by experimental data (after removing skin friction) for
similar inlets in reference 7. Afterbody drag was taken from reference 8 at values
of the ratio of total pressure to free-stream static pressure corresponding to the
tunnel Mach numbers (i.e., flow-through pressure ratio). The above estimate of iso-
lated drag (21 counts) agrees well with the force measurements of figure 37 at
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M, = 0.70, indicating little or no net interference for either nacelle installation
at that condition.

Figure 37 shows that the installation drag of configuration UWS-A became notice-
ably higher than that of configuration UWS-B with increasing Mach number, a differ-
ence which can be attributed to increased wing drag. 1In order to determine the
levels of interference drag on the wing, it was first necessary to estimate the pylon
leading-edge drag. Since the "nose" of each pylon was not instrumented in this test,
pressures along the nacelle orifice rows at ¢ = 30° and 330° at each side of the
pylon were averaged and applied to the area progression of the nose. The average
drag for M, = 0.70 to 0.80 was approximately -3 counts, or equal and opposite to
the inlet spillage drag. Thus, the external pressure drag associated with the enter-
ing stream tube, inlet cowl, and pylon nose region was essentially zero. This means
that the installation pressure drag in figure 37 (increment above skin-friction
level) was principally the sum of the closure drags (fig. 38) and the wing interfer-
ence drag.

Values of closure drag corresponding to Cp = 0.45 and Mach numbers of 0.70 and
0.80 occur at o = 2,0° and 1.73°, respectively, in figure 38. (See lift curves of
fig. 34, also.) Subtracting these results from the pressure drag increments at cor-
responding Mach numbers in figure 37, the reader can verify that the wing interfer-
ence of configuration UWS-A increased from roughly -3 counts at M_ = 0.70 to
5 counts at M, = 0.80, an increase of 8 counts. The corresponding increase in wing
interference drag for configuration UWS-B was from -4 counts to -1 count (a 3-count
increase).

The following table summarizes the results of the preceding discussion and
presents the equation used to derive the wing interference drag:

Integrated closure
Config- M, Calculated drag
uration Measured* pylon-nacelle . Wing
(AGD)NAC skin friction Nacelle Pylon interference
(fig. 37) (fig. 37) boattail | trailing edge drag
(fig. 38) (fig. 38)
UWS-A 0.70 23 16 13 -3 -3
.80 38 15 15 3 5
UWS-B 0.70 21 16 12 -3 -4
.80 31 15 16 1 -1
Wing-interference drag: (:) = ((:) - (:)) - ((:) + (:))

*(ACD)NAC is principally the sum of closure drags and wing interference if
spillage drag and pylon leading-edge sunction cancel each other.

These results show that the adverse pressure gradient separation produced by
locating the leading edge of pylon A behind that of the wing caused higher wing drag
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at M, = 0.80 than produced by pylon B. Therefore, the "relieved," or lower, sur-
face juncture is considered unsuitable for use with supercritical wings because of
the supervelocity environment on the forward lower surface. By comparison, the con-
ventional leading-edge juncture of pylon B caused only a modest drag "creep" between
M, = 0.70 and 0.80 and almost no wing interference drag at cruise conditions

(-1 count estimated). Apparently, the expansion causing shock-induced separation in
the inboard channel also generated compensating wing leading-edge thrust that re-
tarded the drag rise. (Compare pressure data at n = 0,328 in fig. 30(b).) Conse-
quently, joining the pylon and wing leading edges directly causes less tendency
toward increased wing interference drag at high subsonic speeds and still appears to
offer the most suitable procedure. Reducing the curvature at the shoulders of the
pylon crown as well as on the lower inboard wing should help eliminate flow separa-
tion and reduce installation drag.

Figure 38 shows that the pylon closure drag was -3 counts with flow attached
at M, = 0.70 and cruise lift (o = 2°). Approximately the same level is indicated
at M, = 0.80 (a = 1.73°) if the data for the attached flow at a = 3° and 4° are
extrapolated to a = 1.73°., When compared with the actual levels, the results show
an average drag penalty due to pylon trailing-edge separation of about 6 counts for
pylon A and about 4 counts for pylon B at cruise. (See dotted lines on fig. 38 at
M, = 0.80.) Also, with attached flow, the pylon would have produced an installed
component drag of -6 counts, including the leading-edge value of -3 counts estimated
earlier. This major favorable interference (isolated pylon pressure drag negligible)
equals and opposes the "isolated" pressure drag of the nacelle (6 counts). There-
fore, the installation pressure drag can potentially reach zero (viscous drag alone)
provided the large afterbody drags evident in figqure 38 can be reduced. The latter
are seen to be about 15 to 16 counts at cruise conditions, compared to an isolated
level of 3 counts. Thus, the results show an adverse interference drag on the
nacelle afterbody of approximately 12 counts at M, = 0.80.

The following table summarizes the effect of flow separation on the pylon clo-
sure drag. (Values are listed in drag counts where 1 drag count equals 0.0001 in
drag coefficient.)

Pylon
. . leading-edge Pylon closure Pylon total
Configuration Moo estimated drag count drag count

drag count

UWS-A 0.70 -3 -3 (attached flow) -6
«80 -3 3 (separated flow) 0
.80 -3 -3 (estimated attached flow) -6
UWS-B 0.70 -3 -3 (attached flow) -6
.80 -3 1 (separated flow) -2
.80 -3 -3 (estimated attached flow) -6

Comparison of the afterbody drag curves in figure 38 shows a difference of only
about 2 counts between configurations UWS-A and UWS-B. Therefore, the afterbody drag
was not strongly dependent on local peak pressure differences measured on the wing in
the inboard channel, differences which were substantial at times. (See n = 0.328,
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fig. 30.) This suggests that locally improving the inboard juncture shape may elimi-
nate flow separation but may not greatly reduce afterbody drag. Rather, the high
levels of boattail drag coefficient at cruise conditions appear more generally depen-
dent on flow acceleration around the combined shape of wing and pylon, as well as
nacelle position. Further research will be required to examine these general fea-
tures in more detail in an effort to improve the installed performance of long-duct
nacelles with supercritical wings.

CONCLUDING REMARKS

The aerodynamic performance of a long-duct, turbofan nacelle installed with two
different pylon shapes has been determined with a twin-engine transport model having
a supercritical wing swept 30° mounted in the Langley 16-Foot Transonic Tunnel.
Pressure and force data were obtained at Mach numbers from 0.70 to 0.83 and nominal
angles of attack from -2° to 4° at an average unit Reynolds number of 11,9 x 106 per
meter. Both installations used the same axisymmetric flow-through nacelles, pylon
mounted under the wing at 37 percent semispan, with exits at approximately 38 percent
of the local chord. The two symmetrical pylon designs investigated had relatively
flat-topped leading edges at different heights above the nacelle, creating both lower
surface and leading-edge junctures with the wing. At a cruise Mach number of 0.80,
the test results lead to the following conclusions:

1. Adding the long-duct nacelles to the supercritical wing changed the magnitude
and direction of flow velocities over the entire span and significantly reduced
cruise lift. Large interference drag also occurred on the nacelle afterbodies as a
result of their underwing location and exposure to strong local flow accelerations
from the thick wing and pylons. On the whole, these results indicate that consider-
ably more clearance than is usually necessary between wing and nacelles will be
required to minimize interference for installations involving shorter, separate flow
nacelles.

2. The underwing location of the nacelle afterbodies, coupled with wing-pylon
thickness effects, produced high velocities and local flow separation for both wing-
pylon junctures investigated. The lower surface juncture separated most strongly and
caused the wing drag to increase noticeably. The lower surface juncture, therefore,
appears to be unsuitable for use with thick, supercritical wings. By comparison, the
more conventional leading-edge juncture exhibited relatively mild shock-induced sepa-
ration, with only a modest increase in wing drag generally characteristic of com-
pressibility effects. Thus, the leading-edge juncture appears more desirable since
it affords lower wing drag and its compressibility effects can be reduced by local
shaping modifications. These results indicate the need to minimize curvature at the
sides of the pylon leading edges and along the wing lower surface at the pylon
junctures in order to reduce local velocities and avoid separation.

NASA Langley Research Center
Hampton, VA 23665-5225
July 2, 1985
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TABLE I.- WING STREAMWISE AIRFOIL COORDINATES

(a) n = 0.127 (Fuselage side)
z/c z/c

x/c Upper Lower x/c Upper Lower

surface surface surface surface

-.0016 -.0016 .360 .0561 -.0864
.002 .0104 -.0136 .370 .0555 -.0864
.005 .0164 -.0196 .380 .0548 -.0863
.010 .0229 ~-.0266 .390 .0541 -.0862
.020 .0304 -.0351 .400 .0534 -.0860
.030 .0359 -.0401 .410 .0526 -.0858
.040 .0394 -.0446 .420 .0518 -.0855
.050 .0419 -.0486 .430 .0510 -.0852
.060 .0441 -.0521 .440 .0501 -.0848
.070 .0460 -.0553 .450 .0492 -.0843
.080 L0477 -.0581 .460 .0483 -.0838
.090 .0492 -.0607 .470 .0473 -.0832
.100 .0506 -.0632 .480 .0463 -.0825
.110 .0518 -.0655 .490 .0453 -.0817
.120 .0529 -.0676 .500 .0442 -.0809
.130 .0539 -.0695 .510 .0431 -.0800
. 140 .0548 -.0713 .520 .0420 -.0790
.150 .0556 -.0730 .530 .0408 -.0779
.160 .0563 -.0746 .540 .0396 -.0767
.170 .0570 -.0760 .550 .0384 -.0754
.180 .0576 -.0773 .560 .0371 -.0741
.190 .0582 -.0785 .570 .0358 -.0727
.200 .0587 -.0796 .580 .0345 -.0713
.210 .0591 -.0805 .590 .0331 -.0698
.220 .0593 -.0813 .600 .0317 -.0683
.230 .0595 -.0820 .610 .0303 -.0668
.240 .0596 -.0826 .620 .0289 -.0652
.250 .0596 -.0832 .630 .0274 -.0636
.260 .0596 -.0837 .640 .0259 -.0620
.270 .0595 -.0842 .650 .0244 -.0604
.280 .0593 -.0846 .660 .0229 -.0588
.290 .0591 -.0850 .670 .0213 -.0573
.300 .0588 -.0853 .680 .0197 -.0558
.310 .0585 -.0856 .690 .0181 -.0543
.320 .0581 -.0858 .700 .0164 -.0529
.330 .0577 -.0860 .710 .0147 -.0515
.340 .0572 -.0862 .720 .0130 -.0502
.350 .0567 -.0863 .730 .0113 -.0489
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TABLE I.- WING STREAMWISE AIRFOIL COORDINATES - Continued

(a) n = 0.127 (Fuselage side) - Concluded

z/c
x/c Upper Lower
surface surface
.740 .0095 -.0477
.750 .0077 -.0465
.760 .0059 -.0454
770 .0041 -.0444
.780 .0022 -.0434
.790 .0003 -.0425
.800 -.0016 -.0417
.810 -.0036 -.0410
.820 -.0056 -.0404
.830 -.0076 -.0399
.840 -.0096 -.0394
.850 -.0116 -.0390
.860 -.0136 -.0387
.870 -.0156 -.0385
.880 -.0176 -.0384
.890 -.0196 -.0385
.900 -.0216 -.0387
.910 -.0236 -.0390
.920 -.0256 -.0394
.930 -.0276 -.0400
.940 -.0296 -.0407
.950 -.0316 -.0415
. 960 -.0336 -.0424
.970 -.0356 -.0435
.980 -.0376 -.0447
.990 -.0396 -.0460
1.000 -.0416 -.0476
c = 37.899 cm
e = 2.462°
t/c = .144




TABLE I.- WING STREAMWISE AIRFOIL COORDINATES - Continued

(b) n = 0.410 (Planform break)

z/c

X/cC
Upper Lower
surface surface
-.0044 -.0044
.002 .0049 -.0131
.005 .0099 -.0181
.010 .0148 ~-.0230
.020 .0210 -.0290
.030 .0253 -.0329
.040 .0286 -.0360
.050 .0312 -.0386
.060 .0336 -.0408
.070 .0357 -.0427
.080 .0376 -.0444
.090 .0393 -.0459
.100 .0409 -.0473
.110 .0424 -.0487
.120 .0436 -.0499
.130 .0448 -.0510
.140 .0460 -.0520
.150 .0471 -.0529
. 160 .0481 -.0538
.170 .0491 -.0546
.180 .0500 -.0554
.190 .0508 -.0561
.200 .0516 -.0567
.210 .0523 -.0573
.220 .0530 -.0579
.230 .0537 -.0584
.240 .0543 -.0588
.250 .0548 -.0593
.260 .0554 -.0597
.270 .0559 -.0600
.280 .0563 -.0603
.290 .0568 -.0605
.300 .0571 ~.0607
.310 .0575 -.0609
.320 .0577 -.0611
.330 .0580 -.0612
.340 .0582 -.0612
.350 .0585 -.0612

z/c
x/c
Upper Lower
surface surface
.360 .0587 -.0611
.370 .0589 -.0610
.380 .0590 -.0609
.390 .0590 -.0608
.400 .0591 -.0606
.410 .0591 -.0603
.420 .0591 -.0601
.430 .0591 -.0597
.440 .0591 -.0593
.450 .0590 -.0589
.460 .0588 -.0584
.470 .0587 -.0578
.480 .0585 -.0572
.490 .0584 -.0562
.500 .0582 -.0558
.510 .0579 -.0549
.520 .0577 -.0541
.530 .0573 -.0531
.540 .0570 -.0520
.550 .0567 -.0508
.560 .0563 -.0496
.570 .0559 -.0482
.580 .0555 -.0468
.590 .0550 -.0454
.600 .0544 -.0438
.610 .0539 -.0422
.620 .0534 -.0405
.630 .0528 -.0387
.640 .0522 -.0369
.650 .0515 -.0351
.660 .0509 -.0332
.670 .0500 -.0314
.680 .0493 -.0294
.690 .0485 -.0275
.700 .0476 -.0255
.710 .0467 -.0235
.720 .0458 -.0215
.730 .0448 -.0195
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TABLE I.- WING STREAMWISE AIRFOIL COORDINATES - Continued

(b) n = 0.410 (Planform break) - Concluded

z/c
x/ ¢ Upper Lower
surface surface
.740 .0438 -.0175
.750 .0427 -.0155
.760 .0415 -.0135
.770 .0404 -.0116
.780 .0391 -.0098
.790 .0378 -.0081
.800 .0365 -.0064
.810 .0351 -.0048
.820 .0336 -.0034
.830 .0320 -.0020
.840 .0304 -.0008
.850 .0288 .0003
.860 L0271 .0011
.870 .0253 .0017
.880 .0235 .0021
.890 .0215 .0024
.900 .0195 .0025
.910 .0174 .0023
.920 .0152 .0019
.930 .0130 .0011
.940 .0107 .0001
.950 .0083 -.0012
.960 .0058 -.0027
.970 .0033 -.0046
.980 .0005 -.0067
.990 -.0025 -.0092
1.000 -.0056 -.0120
c = 23.249 cm
e = 0.256°
t/c = .12




TABLE I.- WING STREAMWISE AIRFOIL COORDINATES - Continued

(c) n = 1.000 (Tip)

zZ/c

x/c Upper Lower

surface surface

-.0175 -.0175
.002 -.0095 -.0240
.005 -.0053 -.0284
.010 -.0012 -.0323
.020 .0041 -.0367
.030 .0079 -.0397
.040 .0109 -.0420
.050 .0134 -.0439
.060 .0157 -.0455
.070 .0177 -.0468
.080 .0195 -.0480
.090 .0213 -.0491
.100 .0229 -.0500
.110 .0245 -.0509
.120 .0258 -.0516
.130 .0272 -.0523
.140 .0284 -.0530
.150 .0296 -.0535
.160 .0308 -.0540
.170 .0318 -.0544
.180 .0329 -.0548
.190 .0339 -.0551
.200 .0349 -.0554
.210 .0357 -.0557
.220 .0366 -.0559
.230 .0374 -.0561
.240 .0382 -.0562
.250 .0390 -.0563
.260 .0397 -.0563
.270 .0404 -.0564
.280 .0410 -.0564
.290 .0417 -.0563
.300 .0422 -.0563
.310 .0428 -.0561
.320 .0433 -.0560
.330 .0437 -.0558
.340 .0442 -.0556
.350 .0446 -.0553

zZ/c

X/ ¢ Upper Lower

surface surface
.360 .0451 -.0551
.370 .0455 -.0548
.380 .0459 -.0544
.390 .0462 -.0541
.400 .0465 -.0536
.410 .0468 -.0532
.420 .0470 -.0527
.430 .0473 ~-.0522
.440 .0475 -.0516
.450 .0478 -.0510
.460 .0479 -.0503
.470 .0481 -.0495
.480 .0482 -.0488
.490 .0483 -.0479
.500 .0484 -.0471
.510 .0484 -.0462
.520 .0485 -.0451
.530 .0485 -.0441
.540 .0486 -.0429
.550 .0485 -.0418
.560 .0485 -.0405
.570 .0484 -.0392
.580 .0484 -.0378
.590 .0482 -.0364
.600 .0481 -.0348
.610 .0479 -.0333
.620 .0477 -.0316
.630 .0475 -.0299
.640 .0472 -.0281
.650 .0470 -.0264
.660 .0467 -.0245
.670 .0464 -.0227
.680 .0460 -.0208
.690 .0457 -.0189
.700 .0452 -.0170
.710 .0448 -.0150
.720 .0443 -.0131
.730 .0437 -.0111
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TABLE I.- WING STREAMAISE AIRFOIL COORDINATES - Concluded

(c) n=1.000 (Tip) - Concluded

z/c
x/e Upper Lower
surface surface
.740 .0432 -.0092
.750 .0426 -.0072
.760 .0420 -.0052
.770 .0413 -.0034
.780 .0406 -.0015
.790 .0398 .0003
.800 .0391 .0020
.810 .0382 .0037
.820 .0372 .0052
.830 .0362 .0067
.840 .0351 .0081
.850 .0340 .0094
.860 .0328 .0104
.870 .0316 .0113
.880 .0302 .0119
.890 .0288 .0123
.900 .0273 .0127
.910 .0258 .0127
.920 .0241 .0126
.930 .0224 .0122
.940 .0207 .0114
.950 .0188 .0104
.960 .0168 .0091
.970 .0146 .0076
.980 .0123 .0057
.990 .0097 .0036
1.000 .0069 .0012
c = 10.521 cm
e = -1.229°
t/c = .10
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L-79-3940

L-79-3937

Figure 2.- Model with pylon-mounted nacelles (configuration UWS-B) installed in
Langley 16-Foot Transonic Tunnel.



o.so FS
34,290
E!lipsoid— =

Cylinder ——————mm

FS FS
107. 950 157,480

Offset circular
cross sections

el

Ellipsoidal nose
coordinates
FS r
0 0
.254 1, 389
.508 1,961
.635 2.189
.952 2.615
1,270 3.081
1.905 3.7517
2.540 4.318
3.175 4,803
| 3.810 5,237
5,080 5. 981
6,350 6. 621
8.890 7.618
11.430 8.519
13,970 9,208
16.510 9,774
19. 050 10,239
24,130 10.917
29.210 11,303
34,290 11,430

Closure detai]
FS FS
148,590 154. 623
2. 858 radius
\ (spherical)
WL 11,430 ? ‘
r
Local ¢ —
Faired from circular
\—— cross section to spherical
z end cap
WLO.0 l - I _

Afterbody coordinates

FS z -r
107,950 0 11,430
113,030 .254 11,176
118,110 711 10,719

123,190 1,397 10,033
128.210 2.184 9. 246
133,350 3.112 8,319
138.430 4,216 1.214
143.510 5,410 6.020
148.590 6.731 4,699
154, 622 8.573 2,858

(a) Basic shape.

Figure 3.- Fuselage geometry. Linear dimensions are in centimeters.
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Model

FS
48,260 ~
)
|
21,262 /
3 32.103
1
30°/£ ;
44, 450
51,679
Fuselage side —~ 1
/I
_— FS
92.710
R <10, 160~
. ’ 32. 888
10,521 _ ¥
33.317
!‘ 80,162 S—— |
Aspect ratio .......... 7.52
Taper ratio ........... 0.328
Area (trapezoid), cm?. . 3416, 66
T,CM .ieviinennn... 23,132
Cav, CM «ovevervnnnns 21.311
Incidence, deqg........ 0
Dihedral, deg......... 0

Figure 4.- Details of wing planform.

Linear dimensions are in centimeters.
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\ WRP

Fuselage side; t/c = 0.144, BL 10.160

—

P

Planform break; t/c = 0.12, BL 32.888

A

34

E——

Tip; t/c = 0.10, BL 80.162

Figure 5.- Defining airfoil sections of model wing. All linear dimensions
are in centimeters.
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NS NS NS NS NS NS NS
0.0 8573 11,100  18.669 20.320 25,362 40,005

|| | |

Inlet r | Transition section\ / Circular-arc afterbody

(NACA 1-83-75) \ conically convergent nozzle
NWL 0.0 - - - - / - - - -
Inlet coordinates Transition section Afterbody coordinates
and nozzle coordinates
External I nternal I nternal External
NS r NS r NS r NS r
0 4,760 0 4,760 8 572 4,559 18, 669 5.715
.018 | 4.806 .018 4, 699 9,748 4,571 20,574 5.702
.036 | 4823 .036 4,616 10, 922 4,628 22,606 | 5.659
.051 | 4.836 .051 4, 658 12, 098 4, 699 23,622 5. 626
.086 | 4.859 .086 4,633 13,272 4,788 24,638 5.588
130 | 4.882 .130 4, 608 14, 448 4, 884 26,924 5.471
L1731 4.900 173 4,592 15, 621 4,978 21,178 | 5. 456
214 | 4,917 214 4,571 16.797 5. 067 29,210 5.316
L2571 | 4,935 .51 4,569 17.9710 | 5.138 30,734 5.194
L343 | 4,966 .373 4,559 19, 147 5.189 31,496 5, 126
L429 | 4,994 8572 | 4,559 20, 320 5.207 33,782 4, 895
.599 | 5.042 25, 362 5.207 34,290 | 4.839
.89 ] 5.105 36,068 | 4.628
1.285 { 5.192 Conically convergent 31,592 | 4.421
1.714 | 5, 263 38.100 | 4.359
2.144 | 5. 324 40, 005 4,001 39,370 | 4.173
2.570 | 5.380 40,005 4,011
3,000 | 5.431
3,429 | 5.474
3.858 | 5.514
4,288 | 5.550
5.144 | 5,611
5.999 | 5.657
[ 6.858 | 5.690
1,717 | 5.710
8.513 | 5.715
11,100 | 5.715

Figure 10.- Geometric details of nacelles. All linear dimensions are in centimeters.
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S~

Wing outline
at BL 29, 660
NS 3.556 NS 15,977 NS 17.780 (n=031017
| == NS 35.56 (approx)
NWL 9. 652 e | = A B |
NWL 8. 649 Tgblz > . NI
NWL 7.582 - -_% o \—Mating line with
25° —
/ e || A £ Nacelle afterbody outiing =~ ———
—2.858 —
o F___Ll 429 Leading-edge ordinates
Sem'-e”'pseY\ 1.016 Table 1 Table 2
| —f_F i X +y X ty
3'i12 0 0 0 0
NWL 5.524 1 071 | .213 071 | 213
- ‘\ ~ 107 | .259 104 | 259
. 178 | .35 175 | .32
5.T15R 358 | A2 351 | LR
714 | .6l7 699 | _.6l7
N 1.072 | .754 1049 | .75
: 1.430 | 869 1.397 | . 869
Section A-A . . . .
ecion 2144 [ 1.049 2,095 | 1049
2.858 | 1 186 2.794 | 1.186
3.571 | L 288 3.493 | L 288
4288 | 1364 4191 | 1 364
5 001 | 1 410 4.890 | 1 410
5,715 | L 429 5.588 | L 429

(b) Pylon B leading edge.

Figure 11.- Continued.
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_________________ |
BL 11430 == E—

(Fuselage MHB)

I(— ------ g “===-~= 1.0°4 BL 29. 660
. F———N\— - ———— (n= 0.370)7
BL 28.9614+— € --— - — =Sy ———
I : —————— Nacelle §
_________________ e e e
FS FS FS
67381 76,921 92.710

Configuration UWS-A | 0.5° NWL
Configuration UV% 10. 160
- -- ===_--WRP-6———- [———
3’ L WL 8.255

—

FS f————- { ~
36. 924 i
- NWL 0.0
WL l WL -1.905
2,253 L M|
| | NS
NS NS NS 40. 005
0.0 1.100 18, 669 i
76, 929

Figure 12.- Pylon-nacelle installation on wing. All linear dimensions
are in centimeters.
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Nacelle orifice locations

o, deg
0 [30/330 | 90/270 | 180

NS, cm

0.51 [ * *

178 | * *
3.05 | *

3.81 *
5,84 *

1.87

*| %1 *| *

11,43

11. 68

13,72

14.99 *

15.75

18,03

20,57

*] %] *| *

22,61

23, 62 * *

*

24,64

26.92 *

21.18 * * 180°

29.21 * Left rear view

30,73 * *

31,50 *
*

33,78

34,29 * *

36. 07 *

37.59 * *

38,10

*
39, 37 * * *

48

(b) Nacelle pressure orifice locations with adjacent pylon and wing
instrumentation shown for reference.

Figure 13.- Concluded.




Model

¢
Fuselage MHB 7 /L
Upper surface n = 0.154 \ [

5¢ -7

|
No. 90 silicon carbide 'ZOC
grit 0. 25cm wide,

root to tip ™

.25Cﬂ:r

Fuselage MHB
!

n =0 154"\

Lower surface

.40c
I

No. 80 silicon carbide
grit 0,25 cm wide,
root to tip

Figure 14.- Locations of boundary-layer transition strips on wing.
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Figure 18.- Chordwise pressure coefficient distributions on clean-wing
configuration at various angles of attack and M, = 0.70.
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Figure 19.- Chordwise pressure coefficient distributions on clean-wing
configuration at various angles of attack and M, = 0.80.
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Figure 32.- Pressure coefficient distributions on nacelle and adjacent wing
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Figure 32.- Concluded.
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Figure 33.- Pressure coefficient distributions on nacelle and adjacent wing
surfaces for various angles of attack at cruise Mach number.
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Figure 33.- Continued.
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Figure 33.- Concluded.
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Figure 34.- Effects of nacelle installations on total lift and drag coefficients.
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Figure 35.- Influence of pylon-nacelle installations on spanwise load
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Figure 37.- Variation of drag coefficient of a single pylon-nacelle installation with
Mach number at constant lift coefficient (CL = 0.45).
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Figure 38.- Integrated pressure drag coefficient on the closures on
one pylon and nacelle.
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Figure 38.- Concluded.
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